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SUMMARY

We present a wave propagation method rigorous in one-way
and two-way wave theory for complex velocity varying media
with new solutions. In the horizontal wavenumber domain, the
first-order differential system that governs acoustic wave prop-
agation can be written in terms of field vectors that are coupled
in the wavenumber variables through convolutions between the
medium and the fields. The differential system can be uncou-
pled by introducing a reference system with reference velocity
equal to the reciprocal of the rms slowness. The uncoupled
system of equations has propagator solutions that are coupled
in the wavenumber variables. These solutions can be decou-
pled by introducing simple approximations.
This scheme can be exploited for wave equation depth migra-
tion. It then is convenient to introduce new field variables
that relate to upgoing and downgoing waves in the reference
medium. One-way and various two-way wave equations for
the laterally varying medium then can be derived by introduc-
ing the down-up wave interaction (DUWI) model. The differ-
ential equation for the downgoing (incident) field is derived
in the zero-order DUWI model, which neglects the interac-
tions with the upgoing field, resulting in a pure one-way wave
equation for the downgoing field. Similarly, the zero-order
DUWI model yields a one-way wave equation for the upgo-
ing field. In the first-order DUWI model, the downgoing field
from the zero-order DUWI model is used as a source for the
upgoing field. This solution gives a quasi two-way wave equa-
tion which may be used to migrate overturning waves.
Noteworthy, the differential equations we derive have analyti-
cal solutions for migration in the wavenumber domain. Sim-
ple approximations lead to numerically fast migration schemes
that can be implemented in a manner like the split-step Fourier
migration schemes.

INTRODUCTION

Traditionally, seismic migration is based on one-way or two-
way wave equations. One-way wave equations in their sim-
plest form are derived by transforming various approximations
to a specified dispersion relation to a partial differential equa-
tion in the space domain (Claerbout, 1985). Such equations
face limitations in the presence of complex, steeply dipping
reflectors. Another constraint is the decoupling of the upgoing
primaries from the downgoing source field. Two-way wave
equations are sometimes used to avoid the steep-dip limitation
of one-way equations. However, full two-way equations can
not handle upgoing and downgoing fields in a controlled cou-
pling manner, they are expensive in terms of computing cost
and storage, and they are very sensitive to velocity errors.

In addition to finite-difference migration, classic migration tech-

niques are Stolt migration, phase-shift migration, Kirchhoff
migration and split-step Fourier migration (Secrest, 1975; Stolt,
1978; Gazdag, 1978; Schneider, 1978; Stoffaet al., 1990). An
under-explored mathematical model for seismic migration is
the WKBJ approximation model discussed by Bremmer (1951),
Robinson (1982, 1986) and Ursin (1984, 1987). The main rea-
son it was not much explored during the 1980-90’s is that the
model was presented under the assumption of a vertically lay-
ered, laterally homogeneous earth, thereby leading to a slight
generalization of the phase-shift migration method.

Recently, Zhanget al. (2005, 2006) have published one-way
wave equations with WKBJ type solutions by modifying the
above referenced model to heterogeneous media. Amundsen
et al. (2006, 2008) have published papers using the model
with zero-order and first-order interactions between downgo-
ing and upgoing acoustic or elastic fields to derive solutions to
the inverse scattering problem for layered media.

It is noted that a similar model was used by Glauber (1959) in
the study of elementary particle scattering on nuclei, and also
for electron scattering on atoms.

In this paper we first use that the first-order differential equa-
tions for the pressure fieldP and the vertical component of par-
ticle velocityVz have a simple solution when the acoustic ve-
locity is expressed in terms of a reference velocity being the re-
ciprocal of the rms slowness and a perturbation (the difference
between the full velocity and the reference velocity). A sim-
ilar model was introduced by Pai (1988). Next, we introduce
field variables that relate to upgoing and downgoing waves.
The full differential equations for the upgoing and downgoing
waves are the start for deriving one-way and various two-way
wave equations for the upgoing and downgoing components
by the use of the down-up wave interaction (DUWI) model.
The DUWI model generalizes the Bremmer-Robinson-Ursin
model referenced above to treat arbitrary complex velocity me-
dia, but importantly, does not invoke any WKBJ type solutions.
The solutions are exact.

THE DIFFERENTIAL SYSTEM

Let ω denote circular frequency and(x,y,z) the Cartesian co-
ordinates. The depth axis is positive downwards. The acoustic
medium is described by the varying velocityc = c(x,y,z) and
the depth dependent densityρ0(z).

First-order differential equations for P and Vz

The first-order wave equation for pressureP and vertical com-
ponent of particle velocityVz can be written

db
dz

(x,y,z,ω) = A(x,y,z,ω)b(x,y,z,ω) (1)
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with field vectorb = (P,Vz)T and system matrix

A =

[
0 iωρ0
−(iωρ0)−1(ω2/c2 +∂ 2

x +∂ 2
y ) 0

]
(2)

We introduce the depth-dependent reference velocityc0(z) and
split the system matrix in two parts: the reference model sys-
tem matrix

A0 =

[
0 iωρ0
−(iωρ0)−1(ω2/c2

0 +∂ 2
x +∂ 2

y ) 0

]
(3)

and the perturbation matrix

A1 = A−A0 =

[
0 0
−(iωρ0)−1T 0

]
(4)

The functionT is a measure of the lateral velocity inhomo-
geneity at depthz relative to the reference velocity. It is given
as

T(x,y,z,ω) =−K2
0(z)α(x,y,z) (5)

whereK0 = ω/c0 is the reference wavenumber, and

α(x,y,z) = 1−
(

c0(z)
c(x,y,z)

)2

(6)

is the velocity potential.

A Fourier transform over the horizontal coordinates yields the
wavenumber domain equation

db
dz

(kx,ky,z,ω) = A(kx,ky,z,ω)b(kx,ky,z,ω) (7)

with system matrixA = A0 +A1, where

A0 =

[
0 iωρ0
−(iωρ0)−1k2

z 0

]
(8)

and

A1 =

[
0 0
−(iωρ0)−1T∗ 0

]
(9)

The squared vertical wavenumber is defined as

k2
z(kx,ky,z,ω) = ω

2/c2
0(z)−k2

x−k2
y (10)

Observe thatT = T(kx,ky,z) and that∗ denotes 2D convolu-
tion,

f1(kx,ky)∗ f2(kx,ky) =
1

(2π)2∫ ∞

−∞

∫ ∞

−∞
dk′xdk′y f1(kx−k′x,ky−k′y) f2(k′x,k

′
y)

Equation (7) is a first-order differential equation for the field
vector b with wavenumber variableskx and ky. Due to the
convolution term appearing in the perturbation matrixA1, the
field vectors arecoupledin the wavenumber variables.

By choosing the reference velocityc0 as the reciprocal of the
rms slowness (cfr. Pai, 1988), that is,

1/c2
0(z) = [1/c2](kx = 0,ky = 0,z) =

∫ ∫
dxdy1/c2(x,y,z) (11)

then T(kx = 0,ky = 0,z) = 0, and we observe that the term
A1b is independent of the wavenumber variableskx andky (but
depends on wavenumbersk′x 6= kx andk′y 6= ky). Thus, equation
(7) can be written as theuncoupleddifferential system

db
dz

(kx,ky,z,ω) = A0(kx,ky,z,ω)b(kx,ky,z,ω)+ [A1b](z,ω) (12)

Its solution in terms of propagators thus is simple, but not in-
vestigated further here. Instead we go on to derive uncoupled
first-order differential equations for a set of new field variables
that relate to upgoing and downgoing waves in the reference
medium. Since the differential equations are derived from the
system(12) they too will have simple solutions. The solutions
arecoupled, but for numerical calculations simple approxima-
tions lead to anuncouplingthat is precise for migration.

First-order differential equations for U and D

To derive one-way and two-way wave equations for migration,
we introduce new variablesw = (U,D)T so thatb = L0w. By
choosingL0 to be the eigenvector matrix of the system matrix
A0 related to the reference medium, equation (12) becomes

dw
dz

= Λ0w+L−1
0

dL0

dz
w+L−1

0 A1L0w (13)

with eigenvalue matrixΛ0 = L−1
0 A0L0 = diag(−ikz, ikz). Eigen-

vectors are not unique, and both amplitude and flux normaliza-
tion are common choices. With amplitude normalization, the
general differential equations forU andD are

dU
dz

=−ikzU −s[D−U ]−gT ∗ [U +D] (14)

and

dD
dz

= ikzD+s[D−U ]+gT ∗ [U +D] (15)

with scattering function

s=−1
2

1
kz

dkz

dz

and Green’s function radiation pattern

g =
i

2kz
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Figure 1: (a) and (b): The zero-order DUWI models for the
downgoing and upgoing fields, respectively. (c) In the first-
order DUWI model for the upgoing wave, the influence of the
downgoing wave on the upgoing wave is included.

THE DUWI MODEL

Now, we dust the Bremmer-Robinson-Ursin model and extend
it to treat laterally varying velocity media, however, without
invoking the WKBJ approximation. This new mathematical
model for migration is called the down-up wave interaction
(DUWI) model.

The zero-order DUWI model neglects the interaction with the
field traveling in the opposite direction, resulting in a pure
one-way wave equations. In the first-order DUWI model, the
downgoing field from the zero-order DUWI model is used as
a source for the upgoing field. This solution gives a quasi two-
way wave equation.

The differential equation for the downgoing wavefieldD0 in
the zero-order DUWI model follows from equation (15) as

dD0

dz
(kx,ky,z)− [ikz(kx,ky,z)+s(kx,ky,z)]D0(kx,ky,z)

= g(kx,ky,z)T(kx,ky,z)∗D0(kx,ky,z) (16)

It describes the one-way propagation of the incident field through
the medium, as depicted in Figure 1a. The source term on the
right side of equation (16) has the effect of coupling plane
waves due to the velocity inhomogeneities contained in the
functionT, thus modifying the plane wave solution in the rms

slowness background medium described by the vertical wavenum-
ber.

The differential equation for the scattered, upgoing fieldU0
in the zero-order DUWI model (cfr Figure 1b) follows from
equation (14) as

dU0

dz
(kx,ky,z)+ [ikz(kx,ky,z)−s(kx,ky,z)]U0(kx,ky,z)

=−g(kx,ky,z)T(kx,ky,z)∗U0(kx,ky,z) (17)

Equations (16) and (17) are one-way wave equations in later-
ally varying media, and they are accurate for steep dips.

The first-order DUWI model for the scattered field is described
by the differential equation

dU1

dz
(kx,ky,z)+ [ikz(kx,ky,z)−s(kx,ky,z)]U1(kx,ky,z)

=−g(kx,ky,z)T(kx,ky,z)∗U1(kx,ky,z)

−[s(kx,ky,z)+g(kx,ky,z)T(kx,ky,z)∗]D0(kx,ky,z) (18)

which follows from equation (14). In this model, the downgo-
ing field from the zero-order DUWI model acts as a source for
the upgoing field. This quasi two-way wave equation can be
used to image turning waves, which travel first downward and
then curve upwards.

In seismic migration, the wavefield is extrapolated fromz to
z+∆z, where∆z is assumed to be small. To simplify our anal-
ysis, we assume in this small depth interval that the rms slow-
ness is vertically constant so that the vertical wavenumberkz

is constant. Then,s= 0. At z+∆z transmission effects can be
accounted for. In the wavenumber domain, the exact solutions
for the fields atz+∆z are

D0 = Φ(D)
0 +aT ∗D0

U0 = Φ(U)
0 +aT ∗U0

U1 = Φ(U)
1 +aT ∗U1 (19)

wherea = g∆z/2, andΦ(D)
0 ,Φ(U)

0 ,Φ(U)
1 are known fields. For

instance,

Φ(D)
0 (kx,ky,z+∆z) = exp(ikz∆z)

[D0(kx,ky,z)+a(kx,ky)T(kx,ky,z)∗D0(kx,ky,z)](20)

The solutions (19) show that wavefield extrapolation for a given
wavenumber is accomplished by using the whole spectrum of
horizontal wavenumbers simultaneously, which is necessary to
respect the lateral variations in velocity at every depth step.
The solutions (19) can be approximated so that they can be
fast numerically solved.
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Figure 2: Real data from a salt basin imaged with an approxi-
mation to DUWI migration.

The final step of migration is imaging, where the downgoing
and upgoing fields at depth are used to estimate the earth’s
reflectivity.

The method we have presented is valid for acoustic fields in
velocity-inhomogeneous media. The density may vary with
depth. It is possible to extend the differential equations and
corresponding solutions to depth extrapolate fields propagat-
ing in elastic or electromagnetic isotropic/transverse isotropic
media (Amundsen and Reitan, patent application, 2008). The
elastic DUWI model then yields differential equations for P-
P, P-SV, SV-P, SV-SV, and SH-SH migration. We expect that,
say, the P-P and P-SV differential equations and associated so-
lutions can be used to properly depth extrapolate ocean-bottom
seismic data. Finally, we remark that higher-order interactions
can be introduced to treat multiples during the migration.

NUMERICAL EXAMPLE

One of several approximations to the solutions (19) is to ne-
glect the wavenumber dependence of the radiation characteris-
tics of the Green’s radiation, so thatg= g0, a= a0 = i∆z/(4K0).
The solution for the downgoing field in the space domain then
becomes

D0(x,y,z+∆z) = Φ(D)
0 (x,y,z+∆z)/[1−a0T(x,y,z)] (21)

whereΦ(D)
0 is calculated in the wavenumber domain according

to equation (20) and inverse Fourier transformed to the space

domain. The solution for the upgoing field is similar, when
i →−i.

In the case that the medium is “smooth” so that the its deriva-
tives can be neglected, the DUWI migration bears a close rela-
tionship to split-step Fourier migration.

A migration algorithm based on the simple approximationa=
a0 has been applied to a dataset from the Nordkapp Basin, lo-
cated in the Barents Sea. The basin is an exploration area with
complex geology. It contains several salt diapirs with shallow
crests immediately below the seabed, which make imaging of
seismic data very difficult. Especially deeper parts of the salt
flanks below the Base Cretaceous and also the base of the salt
are badly imaged or not imaged at all. We have selected data
from a 2D survey which exhibits the base salt imaging prob-
lem described in Haugenet al. (submitted to SEG 2008). The
image from the DUWI migration based on the approximation
(21) is shown in Figure 2.

CONCLUSIONS

We have proposed a new mathematical model for wave-equation
depth migration that gives rigorous one-way and two-way dif-
ferential equations for the downgoing and upgoing wave-fields.
The differential equations are uncoupled in the wavenumber
variables due to the specific choice of reference medium. The
differential equations have exact coupled solutions that can be
uncoupled by well-defined approximations leading to numeri-
cally fast migration schemes.

A similar procedure can be defined for elastic and electromag-
netic differential systems.
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